Абстрактный

Based on data mining, analysis of diabetes disease risk prediction and diabetes medication pattern

Ilaria Cavallari*

After heart disorders and cancerous tumours, diabetes mellitus is the second most prevalent disease. The number of diabetic patients is rising quickly and displaying a tendency of youth due to the ongoing acceleration of people’s living standards and life rhythms. According to a recent study, China has 114 million adult diabetics, a high prevalence rate, but low levels of awareness, medication adherence, and compliance. Diabetes can lead to a number of complications, including cardiovascular, cerebrovascular, and diabetic foot problems, which not only have a significant impact on the patient’s survival but also put a lot of strain on the patient’s family and society. These complications can be prevented if diabetes is treated and controlled early on. Therefore, controlling and preventing diabetes is a crucial method to conserve medical resources and lower medical expenses. In order to construct a prediction model of diabetes and investigate the law of medication for diabetic patients based on this analysis, we primarily read a lot of literature and gathered some significant theoretical knowledge to clarify the fundamental principles and methods of data mining. We also referred to the research findings of other scholars.

Отказ от ответственности: Этот реферат был переведен с помощью инструментов искусственного интеллекта и еще не прошел проверку или верификацию